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788 VARMA/IMREY

The Kruskal-Wallis test can be expressed in an analysis-
of-variance-like form. The test can also be expressed in
terms of the differences between the observed and ex-
pected rank sums. To extend the test to two or more
strata, we need the variance-covariance matrices of I — 1
of the rank sums.

There is presently no test available for interaction. The
expected values of the rank sums depend on the sample
sizes, and these differ from stratum to stratum. The use
of weights, to produce a common expected value for each
stratum, may provide a test of interaction. This needs
further exploration.
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Specific Non-parametric Approaches to Analyzing Caries
Clinical Trials: Discussion of Dr. Varma’s Presentation
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Dr. Varma merits thanks for an effective discussion, with an
interesting example, of the motivation for and application
of non-parametric inference to dental clinical trial data. I
will supplement his talk with remarks on three areas:

(i) assumptions underlying “standard” non-parametric

analyses;

(ii) general approaches to non-parametric analysis of

partial association; and '

(iii) the meaning of interaction in non-parametric

" analysis of variance.

Dr. Varma has indicated that violations of the conven-
tional assumptions of normality, equal variances, and, in
the analysis of covariance, linearity suggest use of a non-
parametric approach. One must take care to avoid that
blurring of distinctions between various assumptions which
leads to indiscriminate use of non-parametrics as a pre-
sumed cure-all for “ill-conditioned” data. Although much
work has been done to develop tractable non-parametric
procedures for more complex situations, the most desirable
properties of the commonly employed methods, such as
the Wilcoxon and Kruskal-Wallis tests, depend upon the
assumption that all underlying distributions are simple
translations, or location shifts, of a single parent. Equality
of variance under the null hypothesis is implied by this
assumption. Further, a symmetric parent distribution may
be required if non-parameiric inferences are desired about a
mean. Examples 1-3 illustrate the need for equality of
variance, common functional form, and symmetry of
parent distribution if the Wilcoxon test is to give valid
inferences about a contrast of means. Each of the situations
described invalidates the equiprobable permutation model
used to generate the usual null distribution of the Wilcoxon
statistic.

Example 1. — Consider comparing two Gaussian (normal)
distributions with substantially different variances. A
Wilcoxon statistic generated by data from such populations
will have a null distribution much more peaked about its
mean than the usual tabulated referent, because the ob-
servations from the more variable group will almost always
surround those from the less variable group. The actual
level of the test will be well below the nominal level, and,
when the true difference in means is small relative to the
larger of the within-group standard deviations, the test
may have a much lower power than a parametric test.

Example 2. — Consider comparing distributions of dif-
ferent functional forms — for example, a Gaussian with an
exponential distribution. In such a situation, the Wilcoxon
test is directed at the hypothesis P(X > Y) = 1/2, where
X and Y are jndependent random observations from the
respective distributions. This hypothesis is not, in general,
equivalent to hypotheses equating location parameters of
the two populations, e.g., the hypotheses of equal means
or of equal medians. When divided by both sample sizes,
the Wilcoxon statistic yields an unbiased estimate of
P(X > Y). Thus, if Gaussian and exponential forms with
identical first and second moments are compared using the
Wilcoxon statistic, it may easily be shown that the test will
have asymptotically a Type I error rate of 1.0 against the
true hypothesis of equal means. Similarly, when Gaussian
and exponential forms with identical medians and variances
are compared, the Wilcoxon test will have asymptotically a
Type 1 error rate of 1.0 against the hypothesis of equal
medians.

Example 3. ~ Consider the distributions A = fg, 4 Ja and
B=1; /25 3/4 from the two-parameter family
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leifx=6+1
fge(x)=<€if x=6
0 otherwise

for —= < § <o, 0 <e<x<1. Arandom observation from A
has chance 9/16 of exceeding a random observation from B,
so the Wilcoxon test will tend to detect differences in
medians, even though means, variances, and functional
family are common.

These examples emphasize that, although helpful non-
parametric procedures are available for a wide variety of
situations, the most standard procedures are not as generally
useful as one might suppose. Further, general non-parametric
inference does not, in principle, provide a solution for the
classical Behrens-Fisher problem.

If assumptions underlying the Kruskal-Wallis test are
approximately satisfied within strata, it is useful to view
Varma’s proposed partial association test in a more general
context. The test statistic for q strata is based upon expres-
sion of the usual Kruskal-Wallis statistic in stratum k as a
guadratic form in an (I-1)-vector Dy of deviations d; of
treatment rank sums from their null hypothesis expecta-
tions. The kernel of the quadratic form is the covariance
matrix Vi generated by the null hypothesis-based ran-
domization distribution, conditioning on treatment group
sizes. The g-stratum partial association statistic is the
quadratic form comparing the deviation vectors summed

q
across strata ISE Dy) with the summed covariance matrices
=1
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The statistic Q. tests the average partial association hypo-
thesis H, = g = X uy = Q, where gy = HDy is the true

expectation of the rank sum deviation vector Dy.

Now, H, is a reasonable hypothesis to test, in the sense
that departures from it unexplainable by chance are valid
indications of a net treatment effect. However, Kingman
(1984) has pointed out at this meeting that, in a stratified
situation when interaction may be present, there is no
unique test of average or overall effect. Competitors to H,
and Q, are available corresponding to different sets of
weights for the experiences of each treatment in the several
strata; the weights may vary from treatment to treatment.
Such competitive hypotheses may be specified as

q
ZCr =0

Hye: =C =
og Mg =Cup= 2

where C = (Cy, Ca, . . ., Cq) is 2 weight matrix applied to
the strung-out expected rank deviation vector

= i, )
The associated test statistic is

Q¢ = (CD)" (CVp €)1 (CD)
where D = (D1, Dy, ..., Dg) "and Vp is the block diagonal
matrix constructed from the Vy. How does Q, fare within

the general class of test statistics Qc?
It can be argued that Q. fares"poorly whenever treat-

lglyk)’ , ment-by-stratum cells are not filled proportionately by
Qo = (ZDx) Vi)™t (ZDy). design. This would include all cases of post-stratification
TABLE
WITHIN-STRATUM AND AVERAGE PARTIAL ASSOCIATION RANDOMIZATION
CHI-SQUARED STATISTICS FOR DMFS-INCREMENT AND THREE
SCORING SYSTEMS BASED ON RANKS
Marginal Rank Marginal
Scores (Wilcoxon, Ridit Scores Combined

DMFS Kruskal-Wallis, (Mack -+ Skillings, Ridit
Treatments Stratum Increment Benard-vanElteren) vanElteren) Scores
Placebo 1 1.07 0.60 0.60 1.14
VS, 2 092 3.25 3.25 3.22
Weekly Rinse 3 3.92 6.02 . 6.02 512
4 0.84 2.78 2.78 1.17
Average 5.62 7.54 11.36 10.64
Placebo 1 1.70 0.95 0.95 1.65
Vs. 2 2.26 2.20 2.20 236
Daily Rinse 3 5.16 9.13 9.13 8.25
4 0.57 1.53 1.53 0.95
Average 8.03 6.92 11.24 11.51
Weekly 1 0.28 0.03 0.03 0.05
Vs. -2 0.24 0.29 0.29 0.25
Daily Rinse 3 0.05 0.48 048 046
4 0.01 0.04 0.04 0.02
Average 0.21 0.07 0.00 0.01
Placebo 1 245 1.06 1.06 2.04
Vs. 2 2.33 3.85 3.85 3.93
Weekly Rinse 3 6.49 1045 1045 9.05
vs. 4 2.95 4.09 4.09 291
Daily Rinse Average 12.08 9.93 1609 - 1541
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adjustment, as well as pre-stratification with unrestricted
within-stratum randomization. For, in these circumstances,
not only the test statistic, Q,, but also the hypothesis, H,,
that it tests is based upon a random aspect of the data, the
within-stratum distribution of subjects across treatments.
The dilemma is the same as that encountered in classical
analysis of variance of two-way unbalanced and dispropor-
tionate data sets, where main-effects tests address hypothe-
ses depending on the data configuration.

This problem may be simply avoided by constructing
test statistics using the approach suggested, but commen-
cing within each stratum with the vector Ek of mean rank
deviations d; for I-1 treatments. If this is done, it is sensible
to account for differing total stratum sample sizes by basing
an average partial association statistic on the weighted sum
of these mean deviation vectors using the stratum sizes as
weights. This amounts to choosing

- . -1 -1 -1
gk = N}( dlag (nkl ,nkz, ceey nk,I‘—l ),

where ny; is the number of subjects receiving treatment i in
stratum k. The result is, for each treéatment, an average rank
deviation adjusted to the stratum distribution of the entire
subject group.

Statistics of the form just described were initially pro-
posed by Cochran (1950) and Mantel and Haenszel (1959)
in the special context of 2 x 2 contingency tables, and
elaborated more generally by Mantel (1963), Landis et al.
(1978), Stanish (1978), Landis et al. (1979), and Amara
(1982). The underlying rationale may, in fact, be applied
using arbitrary scoring schemes other than the ranks dis-
cussed above, including a variety of scoring schemes derived
from rankings and, in appropriate circumstances, from the
original data values. The Table gives results of such Coch-
ran-Mantel-Haenszel (CMH) analyses using several scoring
schemes. Note that the differences between the rank
analyses and those using original data are not substantial.
Analyses refer respectively to the actual DMFS increment,
the overall within-stratum ranks which underlie the Wil-
coxon, Kruskal-Wallis, and Benard-van Elteren (1953)
statistics, the overall within-stratum ridits used by Mack
and Skillings (1980) and van Elteren (1960), and similar
ridit scores derived from the marginal distribution of all
strata pooled. The within-stratum ranks produce the Wil-
coxon and Kruskal-Wallis statistics used for a single stratum
by Varma, and for these data the CMH rank sum statistic
is very close to Varma’s partial association statistic (since
there is virtually equal allocation within each stratum). It
should also be recognized that these analyses represent only
one of several non-parametric approaches allowing adjust-
ment of treatment comparisons for a concomitant variable,
most of which do not involve any linearity assumptions on
the covariate relationship. They have been recently re-
viewed by Koch er al (1982) and extensively studied by
Amara (1982), and a SAS macro (GRMM) which imple-
ments a general class of randomization analyses for such
problems is in the final stages of preparation for release by
the University of North Carolina Department of Biosta-
tistics.

What of the issue of interaction? From a certain perspec-
tive, it should be realized that interaction is an elusive
concept once we move to the use of ranks. Interaction in a
continuous data situation is typically defined in the con-
text of a linear model for data on a fixed scale. Such no-
tions of interaction are scale-dependent. A major purpose
of using rank procedures is to achieve scale independence,
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but once we have, concerns about conventional interaction
become moot. However, if we define interaction betweep
treatments and strata as variation across strata of some
measure of treatment differences, then there is a scale o
which interaction may be reasonably expressed using rank
data: the “preference probability scale”. The quantitieg
involved are P(T; > Tj'), the probability that a random
individual will respond better to treatment i than to treat.
ment i. These quantities are estimable by multiples of
corresponding Wilcoxon statistics, and the asymptotic co-
variances of such estimates within strata are easily obtained,
The hypothesis of no interaction may be defined as con.
stancy of these probabilities across strata, and appropriate
tests derived. This should be pursued, however, only if the
preference concept of interaction is of interest in itself
Such circumstances may be infrequent. If the original data
scale is a reasonable one for measurement of treatment
efficacy, then the extent to which one treatment is superior
to another on that scale demands explicit incorporation in

any concept of interaction with a claim to practical rele.

vance. In general, presence or absence of interaction on the
original response scale, or a transform of it, will have no
clear relation to presence or absence of interaction on the
preference scale. Rank tests of interaction on a particular
location scale pose more complex randomization theory
problems than do the tests discussed up to now, and have
not seen widespread application. All in all, in extrapolating
the distance concepts of conventional parametric modeling
to a non-parametric framework, great care is necessary.
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