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Introduction.

On occasion, a reviewer will point out that the DMF scores
used to assess caries activity are not normally distributed.
The usual analyses are therefore not valid. The frequently
used normal curve test, the ¢ test, analysis of variance,
and analysis of covariance assume that the study variable
follows a normal distribution. Tests of hypotheses and
estimation procedures usually pertain to the mean, one of
the parameters of the distribution of the response variable.
The procedures use the sample mean and variance as esti-
mates of the parameters and are called parametric proce-
dures. Some of these parametric methods require additional
assumptions about the data. The ¢t test and analysis of
variance assume that the standard deviation of the response
variable is not affected by treatment. However, if the de-
velopment of new caries is inhibited by a cariostatic agent,
the range of the DMFS and its standard deviation are
also reduced. In covariance analysis, we assume that the
relationship between a covariate and the response variable
is linear. A change of one unit in, say, the initial DMFS is
expected to cause the same change in the DMFS increment,
whatever the initial score is. The difference in caries incre-
ment between two children with zero and two initial DMF
surfaces should thus be the same as the difference between
two children with initial scores of 14 and 16. This may be
an unrealistic premise. The covariance analysis also assumes
parallelism. This means that the difference in caries incre-
ment between two children with an initial difference of
two DMF surfaces will be the same for treated and un-
treated children. An effective caries prevention protocol
may not eliminate new caries completely, but it may
retard the process. This can result in a decrease of the
regression slope, which predicts the caries increment as a
function of the initial DMF surfaces. '

The parametric procedures are “robust”. They are not
substantially affected if the assumptions are not exactly
satisfied. Several investigators have studied how much the
data may differ from the postulated criteria before the
parametric tests become invalid, and also what effect the
violations have on the significance level and the discrimi-
nating power of the procedures.}

Another argument in favor of the continued use of the
parametric tests is the central limit theorem. The theorem
states that the sum of independent chance. variables will
tend to a normal distribution if they satisfy some general
regularity conditions, such as having a finite variance.2 A
corollary is that the mean of n independent observations,
from some reference distribution with mean y and stan-
dard deviation g, will tend to a normal distribution with
mean ( and standard deviation 0/\/n.

The initial DMFS distribution of the 598 children who
participated in a study reported by Dr. Albert Kingman will
be used to illustrate this tendency.? One thousand (1000)
samples of sizes five and 20, respectively, have been drawn
without replacement from the 598 children. The mean is
computed for each sample. Fig. 1 shows the percentage dis-
tribution of the baseline DMFS, and of the 1000 means of
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five and 20 observations drawn from it. The initial DMFS j5

not normally distributed. The distribution seems to be

made up of a number of distinct sub-populations. The 593
children represent only one sample from a conceptually
infinite number of samples which can be selected from the
target population represented by these children. A meay
of 598 values will tend to normality more quickly than 3
mean based on five or 20 values. This is one of the reasong
for using the parametric procedures to evaluate carieg
clinical trials. Such trials usually have at least 100 childrep
in each study cohort. ’

The DMFS increment is generally used as the response
variable. It is the difference between two DMF scores. The
increment is less skewed than the baseline and final DMF
surfaces. The percentage distribution of the net DMFS in-
crement of the 598 children is shown in Fig. 2. The histo-
grams of 1000 means of sizes 5 and 20, randomly drawn
from this distribution, are also shown.
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Fig. 1 — Percentage distribution of initial DMFS and of 1000
means of sizes 5 and 20.
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Fig. 2 — Percentage distribution of DMFS increment and of
1000 means of sizes 5 and 20.
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When the violations of the various assumptions are
deemed to be serious, and especially when the samples are
small, a non-parametric or distribution-free method should
be employed — two methods which will be demonstrated
here, based on a ranking of the responses from low to high.
The rank order is used instead of the actual measurement.
The advantages of the non-parametric tests are that:

(1) there are fewer and weaker assumptions about the

underlying distribution of the response variable,

(2) they are easier to compute, especially for small sam-

ples,

(3) the ranks used in many of these procedures are not

affected by outliers,

(4) the results are often easier to interpret, and

(5) only slight loss of efficiency occurs when they are

used instead of the appropriate parametric test.

One disadvantage is the loss of efficiency if a non-
parametric test is used in a situation where a parametric
test is valid. The ranking procedures trim the effect of
outliers and exaggerate the importance of clusters, by
assigning each a different rank. This may be exactly what
is desired, but the distortion introduced by the ranking may
obscure a mix of distinct subpopulations.

If the response variable is continuous, there should be
no tied (equal) observations. Caries data, however, are
counts of surfaces or teeth and are thus discrete. Many
observations have the same value . These observations must
be assigned the average rank of the group of tied values.
This requires some extra computation. The ranking of a
large number of data becomes a difficult task without the
aid of a computer, especially if there are ties. Every wrong
rank affects all the higher ranks, and it is easy to miss a
value while ranking.

The fluoride rinse trial reported by Dr. Kingman will be
used to illustrate some of the distribution-free methods.
The total DMFS, which includes caries of teeth erupted
during the study period, will be treated as a response
variable. There are three study groups: a placebo group,
a weekly fluoride rinse group, and a daily fluoride rinse
group. The children are subdivided into four risk groups,
using the Modified Grainger Severity Index (MGSI).%
The DMFS increments are listed in Table 1 by treatment
group and risk category.

Wilcoxon Rank Sum Test for Two Independent
Samples.

We first consider the comparison of the caries experi-
ence in children receiving the placebo (treatment 1) and
children who rinsed weekly (treatment 2), and who are
in the first MGSI category. These children have no initial
DMF. There are 25 such children in freatment group 1
and 26 in treatment group 2. Their 51 DMFS values must
be ranked from lowest to highest. The lowest value is 0.
Twenty-six children have this value, 12 in group 1 and 14
in group 2. These 26 DMES values are assigned the average
rank, which is (26 X 27) / (2 X 26), or 13.5. There are 12
children with a DMFS increase of one surface. Each is
assigned a rank of 26 + (12 X 13) / (2 X 13) or 32.5, etc.
The ranking is shown in Table 2. The sum of the ranks, R,
for the 25 children in the placebo group is 688. The average
rank is (51 X 52) / (2 X 51), or 26. The expected sum of
25 randomly selected integers, from the sequence 1 through
51, is thus 25 X 26, or 650. This is smaller than the ob-
served rank sum of 688.

The sum of squared deviations from the mean for the
integers 1,2,3,..nis: )
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TABLE1
TOTAL DMFS INCREMENT IN THREE TREATMENT GROUPS
. BY RISK CATEGORY (MGSI SCORE)

Placebo Weekly rinse Daily Rinse
DMFS MGSI MGSI MGSI
Incr. 1 2 3 4 1 2 3 4 1 2 3 4 Total

~18 1 1
-9 1 1
-1 1 1
-3 1 2 3
-2 4 1 3 1 9
-1 3 2 8 2 4 '3 22
0 12 13 4 1 14 22 5 1 1520 7 2116
1 5 17 1 1 7 10 8 1 514 7 2 78
2 111 3 1 20 6 1 420 5 1 73
3 2 17 6 1 7 5 3 1 6 1 59
4 1 11 5 2 3 11 2 3 8 5 2 53
5 1 5 3 1 5 5 2 19 5 2 39
6 1 6 4 2 1 3 6 1 2 2 1 29
7 1 1 3 1 2 4 3 1 2 3 21
8 4 7 3 3 1 1 19
9 4 1 3 2 1 11
10 2 5 1 31 2 3 17
11 1 3 1 11 7
12 1 1 2 2 11 8
13 1 1 2
14 1 1 1 1 4
15 1 1 1 3
16 1 11 3
17 1 1 2 1 1 6
18 1 1 1 3
19 1 1
20 1 1 2
21 2 2
23 1 1
25 1 1 2
33 1 1
35 1 1

Total 25 103 51 25 26 101 51 21 26 98 51 20 598

TABLE 2
WILCOXON TWO-SAMPLE COMPARISON OF PLACEBO AND
WEEKLY FLUORIDE RINSE GROUPS (LOWEST MGSI LEVEL)

DMFS Weekly Cumulative
Increment Placebo Rinse  Total Sum Rank
0 12 14 26 26 135
1 5 7 12 38 325
2 1 2 40 395
3 2 - 2 42 41.5
4 1 3 4 46 445
5 1 - 1 47 47.0
6 1 1 2 49 48.5
7 1 - 1 50 50.0
14 1 - 1 51 51.0
Total 25 26 51
Rank sum: 668 638 1326

Expected sum: 650

Sum of squared deviation SS = 11,050, not corrected for ties; SS =
9438, corrected for ties.
V(@) = 188.76, V(R;) = 2405.76, and S(R,) = 49.05.

i 688 — 650
Wilcoxon test: —4505  ° 0.77.
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SS=n(n?-1)/12
and the variance of a particular ranked value, 1, is:
V@) =8SS/(n-1)=n(n+1)/12.

The variance of the rank sum, Ry, of a random sample of
n; values selected from the n mtegers (ranked observations
without ties) is:

V(R;) = n; V(1) fpc,

where fpc is the finite population correction term. The fpc
is:
n -1y

fpc=

and the variance of the rank sum becomes:

i SS(n—1n;)) mn—n)(n+1)
VR) =93 m=Dn = 12

When observations are equal, their ranks will also be
equal. The sum of squares, SS, the variance of a rank
V(r), and the variance of the rank sum, V(R), are all smaller
than when there are no ties. The sum of squared dev1at10ns
from the mean, when there are ties, becomes:

n(n?—1)- 2t —1)
12 >
where t; corresponds to the size of the j-th set of tied ranks.

If we let t; = 1 for untied ranks, the computation of SS
simplifies to:

S8S=2(r~T)2 =

n3 — 33
12

The “Total” column of Table 2 provides the values of
t; for the computation of SS. Here SS, uncorrected for ties,
is 11,050, and the correction for ties reduces it to 9438. We
thus have:

V(R;) = 2405.7647 and S(R; ) = v/V(R;) = 49.05.

Using the normal curve approximation, we can test whether
the observed rank sum of 688 is an unusual finding:

Ry —E(R;) 38 _
=TS®) . 3905077

Often a finite population correction is applied. The absolute
difference between the observed and expected rank sum is
reduced by 0.5. If we use the finite population correction,

= 0.76. This test is known as the Wilcoxon rank sum
test.> Mann and Whitney arrived at the same test, by con-
sidering the number of times that responses to treatment 1
precede responses to treatment 2. Their equivalent proce-
dure is known as the Mann-Whitney U-testS.

S8 =

Extension of the Wilcoxon Rank Sum Test to more
than one stratum.

A rank sum test-can be carried out to evaluate the effect
of the treatment in each of the four MGSI groups. The
results, corrected for continuity, are shown in the next
table for each of the k = 1,2,..4 strata.

MGSI category  dy = Ry — E(Ry) V(Ry) VA P

1 38.0 2,405.76 0.76 0447
2 755.0 175,193.28 1.80 0.072
3 263.5 22,192.90 1.76 0.078
4 75.5 2,04839 1.66 0.097

J Dent Res May 1984

TABLE 3
COMPARISON OF THREE RINSING PROTOCOLS
IN CHILDREN WITHOUT INITIAL DMFS

DMFS

Weekly Daily Cumulative

Increment Placebo Rinse Rinse  Total Sum Rank
0 12 14 15 41 41 219
1 5 7 5 17 58 50.0
2 1 1 4 6 64 61.5
3 2 — -~ 2 66 65.5
4 1 3 - 4 170 68.5
5 1 - 1 2 72 71.8
6 1 1 - 2 74 73.5
7 1 - 1 2 76 75.5

14 1 — - 1 77 71.0

Total 25 26 26 77

Ranksum 1060.5 984.5 958. 3003.0

Exp.sum 975.0 1014.0 1014.0

Sum of squared deviations SS = 31,865.5

V() =419.2829.

Kruskal-Wall ... .. Between groups 88

ruskal-Wallis test statistic H = Total MS
446.4965 _
T 419.2829 ~

The rank sum in each of the four risk groups is larger
than expected. However, none of the differences is signifi-
cant at the 5% level. The evidence can be pooled, keeping
the stratification intact, by accumulating the rank differ-
ences and their variances:

D = Zdy, with V(D) = ZV(dy).

Here, D = 1131.5 and V(D) = 201840.33. The normal
deviate is Z = 1131.5 [ 449.27, or 2.52 (p = 0.012). This
indicates that the weekly rinsing with fluoride has signifi-
cantly reduced the number of new caries surfaces.

" At present, there is no valid test for interaction. The
pooling over strata assumes that the treatment effect does
not vary from stratum to stratum.

Kruskal-Wallis Test for one stratum.

The observations in the three treatment groups can be
pooled and ranked. Table 3 demonstrates the computa-
tion of the three rank sums for children in the first risk
group. The Kruskal-Wallis test is based on the squared

- deviations of the observed rank sums from their respective

expected values.” It is a test of the hypothesis that all the
study populations have the same location parameter. The
test can be expressed in many forms. If there are no ties,
the formula is a simple expression. The formula found in
most texts is: ‘

: e ln@+1) -1
H=Z‘ni(fi—r)2[—1§——] ,

where n is the sample size of the i-th treatment group, T;
corresponds to the average rank in the i-th treatment group,
and T equals the average rank: (n + 1) / 2. To correct for
ties, H is divided by a correction factor

G Zt(tf 1)

n(@m? —1) ’

where t is the size of the j-th set of tied ranks. Another
formulation of the Kruskal-Wallis test as the ratio of the
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«sum of squares between treatments’ and the “total mean
square”. The numerator of the ratio is the same as the first
term in the formula for H above. The total mean square
corresponds to V(r), which is SS / (n — 1). The denominator

s thus corrected for ties. The test statistic approximately

follows a chi-squared distribution with I — 1 degrees of
freedom, where I equals the number of treatment groups.

Table 3 illustrates the computation of the test statistic
for children who did not have any baseline caries (MGSI
group 1). The results for the four MGSI groups are shown
in the following table:

MGSI group K — W Chi-square p-value
1 1.06 0.589
2 3.80 0.150
3 1045 . 0.005
4 4.09 0.127

Combining the Kruskal-Wallis test over strata.

In order to extend the Kruskal-Wallis test to two or
more strata, it is convenient to discuss first the Wilcoxon
test for one stratum. The two rank sums, Ry and R,
corresponding to the two independent treatment groups,
are not independent. The rank sums add up to the sum of
ranks, namely, n (n + 1) / 2. Therefore, one needs only to
evaluate one of the two rank sums. The normal curve
approximation expresses the observed difference of the
rank sum from the expected value in terms of its standard
deviation. In the one-way layout with I > 2 treatments,
the I rank sums also add up to the sum of n integers. We
need only to consider I — 1 of the sums. Any of the I rank
sums can be selected for deletion. The variance of a rank
sum, R;, is:

n-
V(R;) = S$%n (1 ——31—) s
and the covariance between two rank sums, R; and R{, is:
!
n: N S2
Cov(Ry,R{) = ——5— ,
where $2 =88 / (n — 1).

Let V denote the variance-covariance matrix of the 1-1
rank sums, and V™! its inverse. If we call the vector of
I — 1 differences between the observed and expected rank
sums D, the Kruskal-Wallis test can be written as:

H=DT (V-1 D,
where DT is the transpose of vector D.
For the Wilcoxon test, this becomes:

(Ry —E(Ry)) V(R)™! (Ry — E(Ry)).

This is the square of the normal curve test shown earlier. It
approximately follows a one-degree chi-squared distribution
under the null hypothesis. When there are three treatments,
we need to examine only two sums. The matrices are two-
dimensional, and the computation is relatively simple. If
we use the first two of the three rank sums, we have to
compute:

I
>4

V(Ry)=S2n, (1 —%>

V(Ry) = S2n, (1 -.2_2-> =3B

Iy

n
Cov (RI ,Rz) = — SZ 7
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TABLE 4
ALTERNATIVE COMPUTATION OF KRUSKAL-WALLIS TEST

A: One stratum
The variance-covariance matrix of the rank sums for treatments
1 and 2 in the first MGSI category is:

N 7078.8022 —3539.4011
~~ \-3539.4011  7220.3783

_,_ ((v'*=0.00018713 v!2=0.00009173
v v21=0.00009173 v32 =0.00018346

_fdy= 855
D=\4,=-295

H=285.52x 0.00018713 + —29.52 x 0.00018346 + 2x 85.5 x
—29.5 x 0.00009173 = 1.06, with two degrees of freedom.

i

B: Two or more strata

588179.7679 —297996.7018
—297996.7018  583008.2868

vl 0.0000022943  0.0000011727
(Z¥7 = \0.0000011727 0.0000023147

2412.5 N . !
=D = _1323.5 H = 9.92, with two degrees of freedom.

The determinant of the matrix, which we need to compute
the inverse of the matrix V,is Q = A X B — C2. The ele-
ments of the inverse matrix are:

vil =B/Q
V22 = A/Q
vi2=—C/Q.

Let d; = R; — E(Ry)and d; = Ry — E(Rz) then the
Kruskal-Wallis test can be computed as:

H= d2 11 +d2v22+2d d2V12

To combme the results of the individual tests for various
strata into an overall Kruskal-Wallis-type test, we recom-
mended an overall test, based on the accumulated devia-
tions, D, and their variance-covariance matrices, V8

H=2DpT (ZV)~1 ZD.

The statistic should be referred to a chi-squared distribution
with I — 1 degrees of freedom.

Table 4 illustrates the computation of H for the first
MGSI group and the stratified Kruskal-Wallis test. The
test statistic for the stratified data is 9.92 and leads to re-
jection of the hypothesis that the three rinses are equally
effective in reducing new caries in schoolchildren.

Summary.

The usual parametric procedures are valid for the analy-
sis of most caries clinical trials. If the sample sizes are small,
non-parametric procedures should probably be used, such
as the Wilcoxon two-sample test or the Kruskal-Wallis test.
The Wilcoxon test can be expressed in terms of the dif-
ference between one of the rank sums and its expected
value. This difference is evaluated in terms of its standard
deviation. The Wilcoxon test is extended to produce an
overall test, which takes the stratification into account.
The procedure accumulates the differences between the
rank sum of one of the two treatments and its expected
value, and the corresponding variances.
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The Kruskal-Wallis test can be expressed in an analysis-
of-variance-like form. The test can also be expressed in
terms of the differences between the observed and ex-
pected rank sums. To extend the test to two or more
strata, we need the variance-covariance matrices of 1T — 1
of the rank sums.

There is presently no test available for interaction. The
expected values of the rank sums depend on the sample
sizes, and these differ from stratum to stratum. The use
of weights, to produce a common expected value for each
stratum, may provide a test of interaction. This needs
further exploration.
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Specific Non-parametric Approaches to Analyzing Caries
Clinical Trials: Discussion of Dr. Varma’s Presentation

P.B. IMREY

University of Illinois College of Medicine, Urbana, Hlinois 61801
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Dr. Varma merits thanks for an effective discussion, with an
interesting example, of the motivation for and application
of non-parametric inference to dental clinical trial data. I
will supplement his talk with remarks on three areas:

(i) assumptions underlying “standard” non-parametric

analyses;

(ii) general approaches to non-parametric analysis of

partial association; and ’

(iii) the meaning of interaction in non-parametric

analysis of variance.

Dr. Varma has indicated that violations of the conven-
tional assumptions of normality, equal variances, and, in
the analysis of covariance, linearity suggest use of a non-
parametric approach. One must take care to avoid that
blurring of distinctions between various assumptions which
leads to indiscriminate use of non-parametrics as a pre-
sumed cure-all for “ill-conditioned” data. Although much
work has been done to develop tractable non-parametric
procedures for more complex situations, the most desirable
properties of the commonly employed methods, such as
the Wilcoxon and Kruskal-Wallis tests, depend upon the
assumption that all underlying distributions are simple
translations, or location shifts, of a single parent. Equality
of variance under the null hypothesis is implied by this
assumption. Further, a symmetric parent distribution may
be required if non-parametric inferences are desired about a
mean. Examples 1-3 illustrate the need for equality of
variance, common functional form, and symmetry of
parent distribution if the Wilcoxon test is to give valid
inferences about a contrast of means. Each of the situations
described invalidates the equiprobable permutation model
used to generate the usual null distribution of the Wilcoxon
statistic.

Example 1. — Consider comparing two Gaussian (normal)
distributions with substantially different variances. A
Wilcoxon statistic generated by data from such populations
will have a null distribution much more peaked about its
mean than the usual tabulated referent, because the ob-
servations from the more variable group will almost always
surround those from the less variable group. The actual
level of the test will be well below the nominal level, and,
when the true difference in means is small relative to the
larger of the within-group standard deviations, the test
may have a much lower power than a parametric test.

Example 2. — Consider comparing distributions of dif-
ferent functional forms — for example, a Gaussian with an
exponential distribution. In such a situation, the Wilcoxon
test is directed at the hypothesis P(X > Y) = 1/2, where
X and Y are independent random observations from the
respective distributions. This hypothesis is not, in general,
equivalent to hypotheses equating location parameters of
the two populations, e.g., the hypotheses of equal means
or of equal medians. When divided by both sample sizes,
the Wilcoxon statistic yields an unbiased estimate of
P(X > Y). Thus, if Gaussian and exponential forms with
identical first and second moments are compared using the
Wilcoxon statistic, it may easily be shown that the test will
have asymptotically a Type I error rate of 1.0 against the
true hypothesis of equal means. Similarly, when Gaussian
and exponential forms with identical medians and variances
are compared, the Wilcoxon test will have asymptotically a
Type I error rate of 1.0 against the hypothesis of equal
medians.

Example 3. — Consider the distributions A = £y, ; ja and
B =1y3, 34 from the two-parameter family
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