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Before I comment directly on Dr. Lu’s interesting paper, I
will first exercise a formal discussant’s prerogative of talk-
ing on any subject he pleases that is remotely related to the
presentation of the speaker. Therefore, at this time I wish
to spend about two minutes delivering my philosophy on
the role of simulation in science. :

The value of simulation of a system is related to the
extent of our knowledge concerning that system. Unlike
what one might think on first musing, the value of simula-
tion is not proportional to the amount of our knowledge,
nor, actually, does it bear any monotone relationship,
either increasing or decreasing, to that knowledge. Rather, I
submit that the utility of the simulation (see Fig. 1) is a
sort of inverse Gaussian distribution. In this distribution,
the benefits from the simulation are greatest when the
knowledge is minimal or maximal and are least when our
understanding of the system or process being simulated is
moderate.

One of the best examples of simulation where the
knowledge is maximal would be the NASA Manned Space-
craft Program. Here, the physical and chemical laws describ-
ing the behavior of the rockets, launch vehicles, spacecraft,
and lunar rovers are well understood. The simulation can
proceed in exquisite detail, with both digital and analog
simulation as well as actual physical mock-up devices. The
purpose of simulation in this case, and in other systems of
which there is extensive knowledge, is either to reduce cost
or to minimize risks to humans or animals, or both.
Another example of the extremely detailed system would
be the computer simulation of wind tunnel experiments.
Costs for the use of large aircraft wind tunnels can run as
high as $10,000 per minute. By the year 1990, the use of
large array processing digital computers for simulation of
airflow over air and spacecraft will likely have supplanted
the use of wind tunnels in the vast majority of aircraft
design experiments.

At the opposite end of the spectrum are simulations con-
cerning systems where there is very little knowledge. This
allows the exploration of a variety of “what if*’ scenarios.
The primary purpose of such simulation is qualitative rather
than quantitative behavior and an understanding of the
interrelations of various parts of the system. Examples
would be universes with negative or repulsive gravities,
chemical systems having silicon rather than carbon back-
bones, or complex econometric models of novel socio-
economic environments. Here, classes and types of behavior
are of major interest. Questions such as, Can stable, oscilla-
tory solutions exist? Does the system grow indefinitely? Is
the behavior stable or chaotic? — represent some of the
areas of interest.

The final region, that of moderate information, would
be typical of a number of biomedical simulations. Thus,
simulations of dental caries, the development of cancer
metastases, or the onset of atherosclerosis would be ex-
amples of this type. Sufficient experimental data exist that

one would not employ simulation in the qualitative style
of minimal information systems. Conversely, there is not
sufficient detail that one can employ the simulation tech-
niques at the other end of the spectra which mimic the real
process in considerable detail.

Having delivered mmyself of ifiiis philosophy of simula-
tion, I would now like to comment on the interesting paper
of Dr. Lu. Dr. Lu’s detailed discrete simulation of the caries
experience of tooth surfaces in two groups over a period
from birth to age thirty provides valuable insights into some
of the problems and pitfalls of dental caries clinical trials.
Their work revealed two interesting findings: First, the net
caries increment, representing transitions from sound to
incipient caries, plus the transition .of incipient lesions to
frank caries is a more sensitive measure than the traditional
DMFS score. This finding is important, in that it directs
dental .clinical trials investigators to a measure that is most

sensitive to the subtle changes going on during a three-year

caries clinical trial. Particularly, it shows that such com-
ponents .of the DMFS as UU merely contribute to the
variance while providing no information about the ongoing
caries process, whereas a component such as SU measures
more the result of treatment than of the disease.

The second major result of Dr. Lu’s simulation concerns
the influence of examiner error. He has shown that, where
the examiner error is unbiased and not too large, there is
little effect on the fundamental conclusions of the trial. If,
on the other hand, an examiner manifests bias, either
consciously or unconsciously, or the magnitude of the error
becomes too great, then the findings of the trial can be seri-
ously compromised.

While I am in essential agreement with these conclusions,
1 wish to comment in more detail on two assumptions of
this simulation that affect both results. The first concerns
the selection of the gamma distribution as the survival time
distribution for the tooth surfaces. Of all the standard
parametric survival distributions — including the exponen-
tial, log-normal, gamma, Weibull, Gompertzian, or linear-
exponential model — the gamma probably exhibits the
most desirable behavior. For r 2 2, there is positive aging
with the gamma distribution — that is, increased risk with
increasing time of exposure. I believe 2 more realistic type
of aging behavior for dental caries can be modeled than
that provided by the gamma distribution. To illustrate this
point, we must introduce the concept of the hazard func-
tion from survival distribution theory. .

The survival function, S(t), is defined as the probability
that an individual (in this case a surface) survives longer
than time t, ie.,

S(t) = P (an individual surviving longer than t) = P(T>t).

By definition, the cumulative distribution function, F(f), is
the probability that an individual fails before time t, i.e.,

F(t) = P(T<®).
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Fig. 1 — Simulation utility.

These two distributions are complementary, i.e.,
S(t) =1 — E(t).

Like any other continuous random variable, the survival
time T has a probability density function f(t) which mea-
sures the failure rate at time t and is the derivative of the
cumulative distribution function, i.e.,

(1) = F'(t).

The final (and frequently the most informative) function
relating to survival distributions is the hazard function, h(t).
The hazard function gives the conditional probability of
failing in the interval t, t + dt, given that an individual has
survived to the beginning of the interval. It can be shown
(E. Lee, Statistical Methods for Survival Data Analysis.
Lifetime Learning Pubs., Belmont, California, 1980) that
_im
h(t) Sty ‘
From the defining equation, we can derive the following
expression interrelating the density, hazard, and survival
functions: : :
f(t JaF_d [1-S(t)] = —8'(t
)‘dt'dt —8(t)] = —8"(t).
Substituting this result in the definition equation of the
hazard function above yields.

—§'(t) _—d(inS)
s@  dt

Integrating this equation from 0 to t, using the initial con-
dition that S(0) = 1, yields

S(t) = exp [— ft h(x)d{| .
0

Let us now examine these expressions for the exponen-
tial and gamma distributions. For the exponential distribu-
tion, the survival function is

h(t) =

S(t) =e—at,
Then the density is

£(t) = —S'(t) = ae—t,

Finally
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Fig. 2 — The Exponential Distribution: (@) Survivorship Func-
tion, () Probability Density Function, (¢) Hazard Function.

f(t) ae—ot
= e—at

These functions are plotted in Fig. 2 (adapted from Lee,
1980, p. 158). Note that, for the exponential distribution,
the hazard function is constant — that is, the conditional
probability of failure (dying or developing caries) in any
interval is constant. Thus, it is sometimes said that the pro-
cess has no memory. Radioactive decay is a good example
of exponential survival, an atom having the same likelihood
of decay in any interval, independent of its age.

Turning to the gamma distribution employed in Dr. Lu's
paper, we have the density as

o
@-1)!

The corresponding survival function and hazard function
are more complicated expressions, and there is no particular
value in presenting them here. If the reader is interested, he
can see Lee, 1980.

The gamma distribution is characterized by two parame-
ters, r and &. When 0<r<1, there is negative aging, and the
hazard rate decreases monotonically from infinity to « as
time increases from 0 to infinity. When r>1, there is posi-
tive aging, and the hazard rate increases monotonically
from O to « as time increases. Finally, when 1 = 1,.the
hazard rate equals &, a constant, as in the exponential. Fig.
3 illustrates the gamma hazard fora=1andr=1,2, and 4
(adapted from Lee, 1980, p. 175).

We see that a gamma distribution with r>1 results in
increasing tisk with increased exposure. In the actual clini-
cal caries situation, at least two types of hazard function
are encountered, neither of which has the form of a gamma
distribution with r=>1.

The occlusal surface of the first molar would represent
the first type of surface hazard. This surface has high infant
mortality, representing great risk shortly after eruption
which declines with increasing exposure. This is illustrated
in Fig. 4. The second class of surfaces might be typified by
the distal surface of the first molar. This surface has very
low risk until the second molar erupts. Then the hazard
increases to a peak and declines with subsequent matura-
tion. This behavior is shown in Fig. 5.

The above remarks apply to permanent surfaces only.
For deciduous surfaces, a monotone increasing hazard
function may be meaningful. Hazard functions with the
properties seen in Figs. 4 and 5 could either be estimated
empirically from caries epidemiological data or modeled to
have those characteristics. With such a hazard function(s),
ﬁ(t), the simulation could then proceed with survival
functions ;

f(t) =

(at)r—l e—at

S(t) = exp [—f %(x)d{‘
0

T
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Fig. 3 — Gamma Hazard Functions witha = 1.

h (1)

ERUPTION ADOLESCENCE MATURITY
t

Fig. 4 — Hazard Function for a first molar occlusal surface.

t

Fig. 5 — Hazard Function for a first molar distal surface.

and (1) =i‘1(t) exp [— ft ﬁ(x)dx] .
0

I would also like to comment on the assumptions in the
simulation relating to the diagnostician’s error rate. The
assumption is that the error rate is essentially independent
of the true state of the surface. Therefore, there is a 95%
probability of classifying the state correctly and a 5%
chance of erring on either side of the correct classification
(as seen from Table 1 in Dr. Lu’s paper). Unfortunately, the
probability of misclassification does depend upon the true
state of the surface. Few diagnosticians would miss a frank
caries lesion with overt cavitation. Likewise, a very sound
surface that would not catch an explorer would have a high
probability of being classified as sound. On the other hand,
incipient caries lesions where there is mineral loss would
be subject to a much larger error rate. It would be inter-
esting to see the simulation repeated with the examiner
error matrix modified to reflect these variations depending
upon the true state, and I hope that Dr. Lu will do this for
us.




